Lapisan Matahari yang Utama Lengkap Penjelasannya
Lapisan Matahari – Berikut ini KonsepGeografi.net akan berbagi penjelasan mengenai lapisan matahari. Matahari adalah bintang deret utama tipe G yang kira-kira terdiri dari 99,85% massa total Tata Surya. Bentuknya nyaris bulat sempurna dengan kepepatan sebesar sembilan per satu juta, artinya diameter kutubnya berbeda 10 km saja dengan diameter khatulistiwanya. Karena Matahari terbuat dari plasma dan tidak padat, rotasinya lebih cepat di bagian khatulistiwa ketimbang kutubnya.
Lapisan Matahari |
Matahari adalah bintang Populasi I yang kaya elemen berat. Pembentukan Matahari diperkirakan diawali oleh gelombang kejut dari satu supernova terdekat atau lebih. Teori ini didasarkan pada keberlimpahan elemen berat di Tata Surya, seperti emas dan uranium, dibandingkan bintang-bintang Populasi II yang elemen beratnya sedikit. Elemen-elemen ini sangat mungkin dihasilkan oleh reaksi nuklir endotermik selama supernova atau transmutasi melalui penyerapan neutron di dalam sebuah bintang raksasa generasi kedua.
Matahari tidak punya batas pasti seperti planet-planet berbatu, dan di kepadatan gas di bagian terluarnya menurun seiring bertambahnya jarak dari pusat Matahari. Meski begitu, Matahari memiliki struktur interior yang jelas. Radius Matahari diukur dari pusatnya ke pinggir fotosfer. Fotosfer adalah lapisan terakhir yang tampak, karena lapisan-lapisan di atasnya terlalu dingin atau terlalu tipis untuk meradiasikan cahaya yang cukup agar dapat terlihat mata telanjang di hadapan cahaya terang dari fotosfer. Selama gerhana Matahari total, ketika fotosfer terhalang Bulan, korona Matahari terlihat di sekitarnya.
Baca juga:
- Teori Bintang Kembar Pembentuk Tata Surya.
- Faktor yang Mempengaruhi Banyaknya Sinar Matahari Diterima oleh Permukaan Bumi.
- Proses Terjadinya Gerhana Matahari dan Gerhana Bulan.
- Struktur Matahari Secara Umum Lengkap Gambarnya.
Lapisan Matahari
Untuk lebih jelasnya, berikut beberapa Lapisan Matahari yang utama:
Lapisan-lapisan Utama pada Matahari |
1) Inti Matahari
Inti Matahari diperkirakan merentang dari pusatnya sampai 20–25% radius Matahari. Kepadatannya mencapai 150 g/cm3 (sekitar 150 kali lipat kepadatan air) dan suhu mendekati 15,7 juta kelvin (K). Sebaliknya, suhu permukaan Matahari kurang lebih 5.800 K. Analisis terkini terhadap data misi SOHO menunjukkan adanya tingkat rotasi yang lebih cepat di bagian inti ketimbang di seluruh zona radiatif. Sepanjang masa hidup Matahari, energi dihasilkan oleh fusi nuklir melalui serangkaian tahap yang disebut rantai p–p (proton–proton); proses ini mengubah hidrogen menjadi helium. Hanya 0,8% energi Matahari yang berasal dari siklus CNO.
Inti adalah satu-satunya wilayah Matahari yang menghasilkan energi termal yang cukup melalui fusi; 99% tenaganya tercipta di dalam 24% radius Matahari, dan fusi hampir berhenti sepenuhnya pada tingkat 30% radius. Sisanya dipanaskan oleh energi yang ditransfer ke luar oleh radiasi dari inti ke layar konvektif di luarnya. Energi yang diproduksi melalui fusi di inti harus melintasi beberapa lapisan dalam perjalanan menuju fotosfer sebelum lepas ke angkasa dalam bentuk sinar Matahari atau energi kinetik partikel.
2) Zona Radiatif
Kurang lebih di bawah 0,7 radius Matahari, material Matahari cukup panas dan padat sampai-sampai radiasi termal adalah cara utama untuk mentransfer energi dari inti. Zona ini tidak diatur oleh konveksi termal; meski begitu suhunya turun dari kira-kira 7 juta ke 2 juta kelvin seiring bertambahnya jarak dari inti. Gradien suhu ini kurang dari nilai tingkat selang adiabatik sehingga tidak dapat menciptakan konveksi. Energi ditransfer oleh radiasi—ion hidrogen dan helium memancarkan foton, yang hanya bergerak sedikit sebelum diserap kembali oleh ion-ion lain. Kepadatannya turun seratus kali lipat (dari 20 g/cm3 ke 0,2 g/cm3) dari 0,25 radius Matahari di atas zona radiasi.
Zona radiatif dan zona konvektif dipisahkan oleh sebuah lapisan transisi, takhoklin. Ini adalah wilayah ketika perubahan fenomena mencolok antara rotasi seragam di zona radiatif dan rotasi diferensial di zona konveksi menghasilkan celah besar kondisi ketika lapisan-lapisan horizontal saling bergesekan berlawanan arah. Gerakan cair yang ditemukan di zona konveksi di atasnya perlahan menghilang dari atas sampai bawah lapisan ini, sama seperti karakteristik tenang zona radiatif di bawah. Saat ini, diperkirakan bahwa sebuah dinamo magnetik di dalma lapisan ini menciptakan medan magnet Matahari (baca dinamo Matahari).
3) Zona Konvektif [Lapisan Matahari]
Di lapisan terluar Matahari, dari permukaannya sampai kira-kira 200.000 km di bawahnya (70% radius Matahari dari pusat), suhunya lebih rendah daripada di zona radiatif dan atom yang lebih berat tidak sepenuhnya terionisasikan. Akibatnya, transportasi panas radiatif kurang efektif. Kepadatan gas-gas ini sangat rendah untuk memungkinkan arus konvektif terbentuk.
Material yang dipanaskan di takhoklin memanas dan memuai, sehingga mengurangi kepadatannya dan memungkinkan material tersebut naik. Pengaruhnya, konveksi termal berkembang saat sel panas mengangkut mayoritas panas ke luar hingga fotosfer Matahari. Setelah material tersebut mendingin di fotosfer, kepadatannya meningkat, lalu tenggelam ke dasar zona konveksi. Di sana material memanfaatkan panas dari atas zona radiatif dan siklus ini berlanjut. Di fotosfer, suhu menurun hingga 5.7000 K dan kepadatannya turun hingga 0,2 g/m3 (sekitar 1/6.000 kepadatan udara di permukaan laut).
Kolom panas di zona konveksi membentuk jejak di permukaan Matahari yang disebut granulasi dan supergranulasi. Konveksi turbulen di bagian terluar interior Matahari ini menghasilkan dinamo "berskala kecil" yang menciptakan kutub magnetik utara dan selatan di seluruh permukaan Matahari. Kolom panas Matahari disebut sel Bénard dan berbentuk prisma heksagon.
4) Fotosfer Matahari
Permukaan Matahari yang tampak, fotosfer, adalah lapisan yang di bawahnya Matahari menjadi opak terhadap cahaya tampak. Di atas fotosfer, sinar Matahari yang tampak bebas berkelana ke angkasa dan energinya terlepas sepenuhnya dari Matahari. Perubahan opasitas diakibatkan oleh berkurangnya jumlah ion H− yang mudah menyerap cahaya tampak. Sebalinya, cahaya tampak yang kita lihat dihasilkan dalam bentuk elektron dan bereaksi dengan atom hidrogen untuk menghasilkan ion H−.
Tebal fotosfer puluhan sampai ratusan kilometer, sedikit kurang opak daripada udara di Bumi. Karena bagian atas fotosfer lebih dingin daripada bagian bawahnya, citra Matahari tampak lebih terang di tengah daripada pinggir atau lengan cakram Matahari; fenomena ini disebut penggelapan lengan. Spektrum sinar Matahari kurang lebih sama dengan spektrum benda hitam yang beradiasi sekitar 6.000 K, berbaur dengan jalur penyerapan atomik dari lapisan tipis di atas fotosfer. Fotosfer memiliki kepadatan partikel sebesar ~1023 m−3 (sekitar 0,37% jumlah partikel per volume atmosfer Bumi di permukaan laut). Fotosfer tidak sepenuhnya terionisasikan—cakupan ionisasinya sekitar 3%, sehingga nyaris seluruh hidrogen dibiarkan berbentuk atom.
Selama penelitian awal terhadap spektrum optik fotosfer, beberapa jalur penyerapan yang ditemukan tidak ada kaitannya dengan elemen kimia apapun yang saat itu dikenal di Bumi. Pada tahun 1868, Norman Lockyer berhipotesis bahwa jalur-jalur penyerapan ini terbentuk oleh elemen baru yang ia sebut helium, diambil dari nama dewa Matahari Yunani Helios. 25 tahun kemudian, helium berhasil diisolasi di Bumi.
5) Atmosfer Matahari
Lapisan matahari di atas fotosfer disebut atmosfer Matahari. Atmosfer dapat diamati menggunakan teleskop yang beroperasi di seluruh spektrum elektromagnet, mulai dari radio hingga cahaya tampak sampai sinar gamma, dan terdiri dari lima zona utama: suhu rendah, kromosfer, wilayah transisi, korona, dan heliosfer.
Heliosfer, dianggap sebagai atmosfer terluar tipis Matahari, membentang ke luar melewati orbit Pluto hingga heliopause yang membentuk batas dengan medium antarbintang. Kromosfer, wilayah transisi, dan korona jauh lebih panas ketimbang permukaan Matahari. Alasannya belum terbukti tepat; bukti yang ada memperkirakan bahwa gelombang Alfvén memiliki energi yang cukup untuk memanaskan korona.
Lapisan terdingin Matahari adalah wilayah suhu rendah yang terletak sekitar 500 km di atas fotosfer dengan suhu kurang lebih 4.100 K. Bagian Matahari ini cukup dingin untuk memungkinkan keberadaan molekul sederhana seperti karbon monoksida dan air, yang dapt dideteksi melalui spektrum penyerapan mereka.
Di atas lapisan suhu rendah ada lapisan setebal 2.000 km yang didominasi spektrum emisi dan jalur penyerapan. Lapisan ini bernama kromosfer yang diambil dari kata Yunani chroma, artinya warna, karena kromosfer terlihat seperti cahaya berwarna di awal dan akhir gerhana Matahari total. Suhu kromosfer meningkat perlahan seiring ketinggiannya, berkisar sampai 20.000 K di dekat puncaknya. Di bagian teratas kromosfer, helium terionisasikan separuhnya.
6) Medan Magnet Matahari
Matahari adalah bintang yang magnetnya aktif. Matahari memiliki medan magnet kuat dan yang berubah-ubah tiap tahun dan berbalik arah setiap sebelas tahun di sekitar maksimum Matahari. Medan magnet Matahari mencadi penyebab sejumlah dampak yang secara kolektif disebut aktivitas Matahari, termasuk titik Matahari di permukaan Matahari, semburan Matahari, dan variasi angin Matahari yang mengangkut material melintasi Tata Surya.
Dampak aktivitas Matahari terhadap Bumi meliputi aurora di lintang tengah sampai tinggi dan gangguan komunikasi radio dan tenaga listrik. Aktivitas Matahari diduga memainkan peran besar dalam pembentukan dan evolusi Tata Surya. Aktivitas Matahari mengubah struktur atmosfer terluar Bumi.
Nach itulah beberapa Lapisan Matahari yang Utama, mulai dari inti matahari, Zona radiatif, Zona konvektif, Fotosfer, dan Atmosfer. Semoga dapat memberikan manfaat bagi kita semua. – KonsepGeografi.net
Sumber:
[Wikipedia Indonesia]
[Google Images]
[Ilmu Geografi]
[http://www.konsepgeografi.net/]